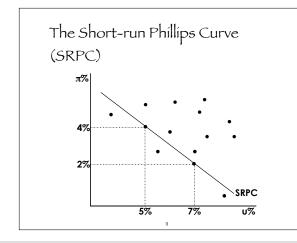


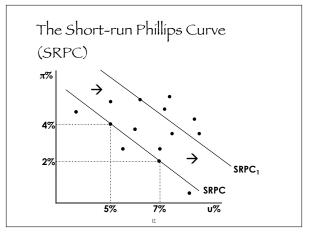
Problems with the original Phillips Curve model

- ${\strut}$ In the 1970's the United States experienced both high u % and π %, a condition known as stagflation. American Nobel Prize economist Milton Friedman saw stagflation as disproof of the stable Phillips Curve. Instead of a trade-off between u% & π %, Friedman and fellow Nobel Prize recipient Edmund Phelps believed that the natural u% (u_n %) was independent of the π %.
- This independent relationship is now referred to as the Long-run Phillips Curve.

6

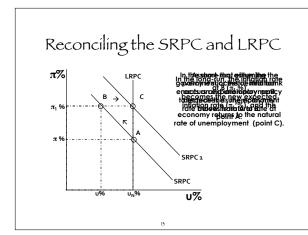
7

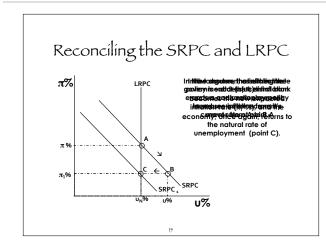

The Long-run Phillips Curve (LRPC)


- Because the Long-Run Phillips Curve exists at the natural rate of unemployment (u_n), structural changes in the economy that affect u_n will also cause the LRPC to shift.
- Increases in u_n will shift LRPC \rightarrow
- Decreases in u_n will shift LRPC \leftarrow

The Short-run Phillips Curve (SRPC)

- Today many economists reject the concept of a stable Phillips curve, but accept that there may be a short-term trade-off between u% & π % given stable inflation expectations. Most believe that in the longrun u% & π % are independent at the natural rate of unemployment. Modern analysis shows that the SRPC may shift left or right.
- The key to understanding shifts in the Phillips curve is inflationary expectations!


10



12

Reconciling the SRPC and LRPC (Text from previous slide)

- Assume that either the government or the central bank enacts an expansionary policy to reduce the unemployment rate below its natural rate at point A.
- In the short-run, assuming the policy is successful, inflation occurs and unemployment decreases as the economy moves from A to B.
- In the long-run, the inflation rate at B (\P_1 %) becomes the new expected inflation rate (\P_1 %), and the economy returns to the natural rate of unemployment (point C).

Reconciling the SRPC and LRPC (Text from previous slide)

- Now assume that either the government or the central bank enacts a contractionary policy to reduce inflation from it's current rate at point A
- In the short-run, assuming the policy is successful, disinflation occurs and unemployment increases as the economy moves from A to B.
- In the long-run, the inflation rate at B (r %) becomes the new expected inflation rate (r %), and the economy, once again, returns to the natural rate of unemployment (point C).

16

14

15

.

18

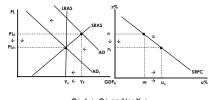
19

AD/AS and the Phillips Curve

- Changes in the AS/AD model can also be seen in the Phillips Curves
- An easy way to understand how changes in the AS/AD model affect the Phillips Curve is to think of the two sets of graphs as mirror images.
- NOTE: The 2 models are not equivalent. The AS/AD model is static, but the Phillips Curve includes change over time. Whereas AS/AD shows one time changes in the price-level as inflation or deflation, The Phillips curve illustrates continuous change in the price-level as either increased inflation or disinflation.

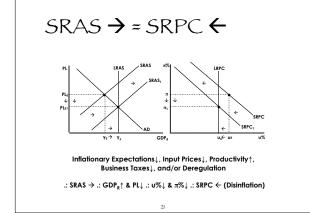
17

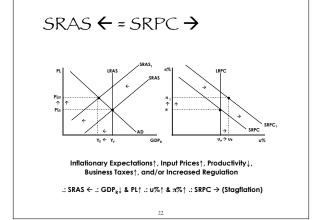
AP Tips & Tricks


- $\bullet\,$ The natural rate of unemployment (u) and Full Employment output (Y_{j}) will be the same number in the economy.
 - Full employment in the (1.5. Is between 4-5%, so long as there is no cyclical unemployment present. Similarly, the natural rate or unemployment (or the amount found when no cyclical unemployment is present is 4-5%).
- The mirroring effect is an easy way to remember what is happening in an economy and helps bridge the gap between the AD/AS model and the Phillips Curve.
 - A shift in AD will result in a <u>movement</u> along the SRPC

18

• A shift in SRAS will result in a <u>shift</u> along the SRPC


Increase in AD = Up & left along the SRPC $\frac{r_{L}}{r_{L}} \xrightarrow{r_{L}} \underbrace{r_{L}}_{r_{L}} \xrightarrow{r_{L}}_{r_{L}} \xrightarrow{r_{L}} \underbrace{r_{L}}_{r_{L}} \xrightarrow{r_{L}}_{r_{L}} \xrightarrow{r_{L}} \xrightarrow{r_{L}} \xrightarrow{r_{L}} \xrightarrow{r_{L}} \xrightarrow{r_{L}} \xrightarrow{r_{L}} \xrightarrow{r_{L}} \xrightarrow{r_{L}} \xrightarrow{r_{L}} \xrightarrow{$


Decrease in AD = Down & Right along the SRPC

$$\begin{split} C \downarrow, I_G \downarrow, G \downarrow \text{ and/or } X_N \downarrow \\ .: AD \leftarrow .: GDP_R \downarrow \& PL \downarrow :: U\% \uparrow \& \pi\% \downarrow .: down/right along SRPC \end{split}$$

20

Summary

- There is a short-run trade off between u% & π %. This is referred to as a short-run Phillips Curve (SRPC)
- In the long-run, no trade-off exists between u% & π%. This is referred to as the long-run Phillips Curve (LRPC)
- The LRPC exists at the natural rate of unemployment $(u_{\underline{n}})$.
 - $_u_n$ † .: LRPC \rightarrow
 - _ u_n ↓ .: LRPC ←

Summary (Cont.)

- ΔC , ΔI_G , ΔG , and/or $\Delta X_N \neq \Delta$ AD = move along SRPC
 - _ AD → .: GDP_R ↑ & PL↑ .: u%↓ & π%↑ .: up/left along SRPC _ AD ← .: GDP_R↓ & PL↓ .: u%↑ & π%↓ .: down/right along SRPC
- $\bullet~\Delta$ Inflationary Expectations, Δ Input Prices, Δ Productivity, Δ Business Taxes and/or Δ Regulation
 - ≈ ∆ SRAS ≈ <u>Shift</u> SRPC
 - _ SRAS → .: GDP_R ↑ & PL↓ .: u%↓ & π%↓ .: SRPC ← _ SRAS ← .: GDP_R↓ & PL↑ .: u%↑ & π%↑ .: SRPC →

24

24

22

23